Shale shaker screen deck design

Hook-strip screens have been mounted with both underslung and overslung supports. Some previous generations of oilfield shale shaker designs used screens that were underslung, or pulled up from the bottom of a group of support, or ‘‘bucker,’’ bars (Figure 7.15). These support bars would divide the flow of material down the screen. Some problem is experienced occasionally when solids are trapped under the rubber bar supports.


Some linear motion shale shakers utilize overslung screens (Figure 7.16). With this approach, screens are attached to the bed of the shaker by being pulled down onto the bed from the top. This results in a screening area completely free of obstacles. Modern shale shaker bed design has also increased the number of support ribs located beneath the screen to aid in fine-screen support and to reduce the amount of ‘‘crown,’’ or ‘‘bow,’’ necessary to properly tension screen panels. Some problem is experienced occasionally when the fluid leaves the high center of the screen and flows down the sides of the screen.
Most circular motion shale shakers were built with a double deck, meaning that fluid flowed over and through the top screen onto a finer screen immediately below. This arrangement led to some problems in operation, because the bottom screen was not easily visible. (Generally a flashlight was needed to inspect it.) A torn screen could remain in operation for a long time before it was noticed and changed. This created problems with solids removal because the bottom screen would not provide
the intended finer screening. Some manufacturers installed backflow pans under the top screen to direct the flow through the entire screen area of the bottom screen, but these just made it even more difficult to see the bottom screen.
Most manufacturers of linear motion shale shakers have adopted a single-deck design. The units have clear visibility for ease of care and maintenance. This unobstructed approach also makes screen changing much easier. The fluid pool tends to obscure any torn screens until drill pipe connections are made. Therefore, a torn screen on a single deck shaker reduces solids-removal efficiency until a new screen is installed.
Crews need to be alert to torn screens no matter what shaker is used. This is especially true during slow drilling, when drill pipe connections are infrequently made. When riser-assist pumps are used, flow should be periodically directed to different shakers during connections. This allows screens to be properly inspected and replaced, if needed.

Shale shaker design-vibrating system

The type of motion imparted to the shale shaker depends on the location, orientation, and number of vibrators used. In all cases, the correct direction of rotation must be verified.
Unbalanced elliptical motion shakers use a single vibrator mounted above the shale shaker’s center of gravity. Integral vibrators, enclosed vibrators, and belt-driven vibrators are used for this shale shaker design.
Circular motion shale shakers use a single vibrator mounted at the shale shaker’s center of gravity. Belt-driven vibrators and hydraulic-drive vibrators are used for this shale shaker design.
Most linear motion shakers use two vibrators rotating in opposite directions and mounted in parallel, but in such a manner that the direction and angle of motion is achieved. Integral vibrators, enclosed vibrators, belt-driven vibrators, and gear-driven vibrators are used for this shale shaker design.
Balanced elliptical motion shakers use two vibrators rotating in opposite directions but at a slight angle to each other so that they are not parallel. These vibrators must be oriented correctly to achieve the direction and angle of motion desired. The elliptical motion traces must all lean toward the discharge end and not backward toward the possum belly. If two vibrators of different masses are mounted in the same manner as the linear motion vibrators (i.e., parallel), a balanced elliptical motion is also achieved.
Various vibrating systems are used on shale shakers. These systems include:
1. Integral vibrator: The eccentrically weighted shaft is an integral part of the rotor assembly in that it is entirely enclosed within the electric motor housing.
2. Enclosed vibrator: This is a double-shafted electric motor that has eccentric weights attached to the shaft ends. These weights are enclosed by a housing cover attached to the electric motor case.
3. Belt-driven vibrator: The eccentrically weighted shaft is enclosed in a housing and a shaft is attached to one end. A sheaved electric motor is used to rotate the shaft with a belt drive. The electric motor may be mounted alongside, above, or behind the shaker, depending on the model. It may also be mounted on the shaker bed along with the vibrator assembly.
4. Dual-shafted, belt-driven vibrator: This system is similar to that of the belt-driven vibrator except that it has two vibrator shafts rotating in opposite directions and is driven by one electric motor with a drive belt.
5. Gear drive: A double-shafted electric motor drives a sealed gearbox, which in turn rotates two vibrator shafts in opposite directions.
6. Hydraulic drive: A hydraulic drive motor is attached directly to a vibrator shaft, which is enclosed in a housing. The hydraulic motor must have a hydraulic power unit that includes an electric motor and a hydraulic pump. The hydraulic-drive motor powers the vibrator shaft.

Shale shaker limits

A shale shaker’s capacity has been reached when excessive amounts of drilling fluid (or drilling-fluid liquid phase) first begins discharging over the end of the shaker. The capacity is determined by the combination of two factors:
1. The fluid limit is the maximum fluid flow rate that can be processed through the shaker screen.
2. The solids limit is the maximum amount of solids that can be conveyed off of the end of the shaker.
The two limits are interrelated in that the amount of fluid that can be processed will decrease as the amount of solids increases.
Any shale shaker/screen combination has a fluids-only capacity (i.e., no solids are present that can be separated by the screen) that is dependent on the characteristics of the shaker (g factor, vibration frequency, type of motion, and angle of the screen deck), of the screen (area and conductance), and of the fluid properties (viscosity characteristics, density, additives, and fluid type). The mechanical features of the shaker are discussed later in this chapter. The fluid-only capacity is the fluid limit with zero removable solids. For the sake of the current discussion, the drilling fluid is assumed to be a fluid with no solids larger than the openings in the shaker screen, although this is not true in many real instances.
The screen cloth can be considered to be a permeable medium with a permeability and thickness (conductance) and an effective filtration area. The fluid capacity will decrease as the fluid viscosity increases (plastic viscosity is important but yield and gel strengths can have a significant impact as well). Capacity will also increase as the fluid density increases due to increased pressure on the screen surface acting as a force to drive fluid through the screen.
The fluid-only capacity will generally be reduced when certain polymers are present in the fluid. Partially hydrolyzed polyacrylamide (PHPA) is most notable in this respect, as it can exhibit an effective solution viscosity in a permeable medium higher than that measured in a standard viscometer. At one time, the effective viscosity of PHPA solutions was determined by flowing the solution through a set of API 100 screens mounted in a standard capillary viscometer. PHPA drilling fluids typically have a lower fluid-only capacity for a given shaker/screen combination than do similar drilling fluids with PHPA because of this higher effective viscosity. This decrease in fluids-only capacity can be as much as 50% compared with a bentonite/water slurry. Adsorption of PHPA polymer may decrease effective opening sizes (as it does in porous media), thereby increasing the pressure drop required to maintain constant flow. This makes the PHPA appear to be much more viscous than it really is. This effect also happens with high concentrations of XC (xanthan gum, a polysaccharide secreted by bacteria of the genus Xanthomonas campestris) in water-based fluids, in drilling fluids with high concentrations of starch, in newly prepared NAFs, and in polymer-treated viscosifiers in NAFs.
The solids limit can be encountered at any time but occurs most often during the drilling of large-diameter holes and soft, sticky formations and during periods of high penetration rates. A relationship exists between the fluid limit and the solids limit. As the fluid flow rate increases, the solids limit decreases. As the solids loading increases, the fluid limit decreases. Internal factors that affect the fluid and solids limits are discussed in section 7.5, Shale Shaker Design.
The following are some of the major external factors that affect the solids and fluid limits.
1. Fluid Rheological Properties
Literature indicates that the liquid capacity of a shale shaker screen decreases as the plastic viscosity (PV) of a drilling fluid increases. PV is the viscosity that the fluid possesses at an infinite shear rate.(1) Drilling fluid viscosity is usually dependent on the shear rate applied to the fluid. The shear rate through a shale shaker screen depends on the opening size and how fast the fluid is moving relative to the shaker screen wires. For example, if 400 gpm is flowing through a 4*5-ft API 100 market grade (MG) screen (30% open area), the average fluid velocity is only 1.8 inches per second. Generally the shear rates through the shaker screen vary significantly. The exact capacity limit, therefore, will depend on the actual viscosity of the fluid. This will certainly change with PV and yield point (YP).
2.Fluid Surface Tension
Although drilling-fluid surface tensions are seldom measured, high surface tensions decrease the ability of the drilling fluid to pass through a shale shaker screen, particularly fine screens, with their small openings.
3.Wire Wettability
Shale shaker wire screens must be oil wet during drilling with oil-based drilling fluids. Water adhering to a screen wire decreases the effective opening size for oil to pass through. Frequently, this results in the shaker screens not being capable of handling the flow of an oil-based drilling fluid. This is called ‘‘sheeting’’ across the shaker screen, which frequently results in discharge of large quantities of drilling fluid.
4.fluid density
Drilling-fluid density is usually increased by adding a weighting agent to the drilling fluid. This increases the number of solids in the fluid and makes it more difficult to screen the drilling fluid.
5.Solids: Type, Size, and Shape
The shape of solids frequently makes screening difficult. In single-layer screens, particles that are only slightly larger than the opening size can become wedged into openings. This effectively plugs the screen openings and decreases the open area available to pass fluid. Solids that tend to cling together, such as gumbo, are also difficult to screen. Particle size has a significant effect on both solids and liquid capacity. A very small increase in near-size particles usually results in a very large decrease in fluid capacity for any screen, single or multilayer.
Solids compete with the liquid for openings in the shaker screen. Fast drilling can produce large quantities of solids. This usually requires coarser screens to allow most of the drilling fluid to be recovered by the shale shaker. Fast drilling is usually associated with shallow drilling. The usual procedure is to start with coarser-mesh screens in the fast drilling, larger holes near the top of the well and to ‘‘screen down’’ to finer screens as the well gets deeper. Finer screens can be used when the drilling rate decreases.
Boreholes that are not stable can also produce large quantities of solids. Most of the very large solids that arrive at the surface come from the side of the borehole and not from the bottom to the borehole. Drill bits usually create very small cuttings.
7. Hole Cleaning
One factor frequently overlooked in the performance of shale shakers is the carrying capacity of the drilling fluid. If cuttings are not brought to the surface in a timely manner, they tend to disintegrate into small solids in the borehole. If they stay in the borehole for a long period before arriving at the surface, the PV and solids content of the drilling fluid increases. This makes it appear that the shale shaker is not performing adequately, when actually the solids are disintegrating into those that cannot be removed by the shale shaker.


(1)The Bingham Plastic rheological model may be represented by the equation
shear stress = (PV)shear rate + YP:   By definition, viscosity is the ratio of shear stress to shear rate. Using the Bingham
Plastic expression for shear stress,
viscosity = [(PV)shear rate + YP]=shear rate:
Performing the division indicated, the term for viscosity becomes
(PV) + [YP/shear rate]:
As shear rate approaches infinity, viscosity becomes PV.

shale shaker description

The majority of shale shakers use a back tank (commonly known as a possum belly or a mud box) to receive drilling fluid from the flowline (Figure 7.3). Drilling fluid flows over a weir and is evenly distributed to the screening surface, or deck. The screen(s) are mounted in a basket that vibrates to assist the throughput of drilling fluid and the movement of separated solids. The basket rests on vibration isolator members, such as helical springs, air springs, or rubber float mounts. The vibration isolation members are supported by the skid. Below the basket, a collection pan (or bed) is used to channel the screen underflow to the active system.

Shale shaker performance is affected by the type of motion, stroke length of the deck, and the rotary speed of the motor. The shape and axial direction of the vibration motion along the deck is controlled by the position of the vibrator(s) in relation to the deck and rotation direction of the vibrator(s). There are many commercially available basket and deck configurations. The deck may be mounted at a slope (Figures 7.4A, B, E, and F) or horizontally (Figures 7.4C and 7.4D). Deck surfaces may be tilted up or down in the basket. The basket may be horizontal or at a fixed angle, or have an adjustable angle. An adjustable basket angle allows the deck to be tilted up or down.
On sloped deck units (cascade or parallel flow), the screens may be continuous, with one screen covering the entire deck length (Figures 7.4A and E), may have a divided deck that has more than one screen used to cover the screening surface (Figures 7.4B and F), or may have individual screens mounted at different slopes (Figures 7.4G and H). On multiple deck units, fluid passes through the upper deck before flowing to the next deck (Figures 7.4B, F, and H).