The application of polymer muds has been hindered by two criticisms. First, they are difficult to run because mud-engineering maintenance guidelines are very different from conventional bentonite mud systems. Second, they are less solids-tolerant than dispersed or lime-based systems. Consequently, these muds often have proved uneconomical for drilling geologically young and highly dispersive shales or for drilling with high mud weights (greater than 14 lbm/gal [greater than 1700 kg/m3]).
SOLIDS CONTROL EQUIPMENT FOR WEIGHTED MUDS
Weighted muds are the ones that contain weighting materials. These mud systems are usually used for drilling at deeper depths because of increasing formation pressures. The typical composition of weighted clay/water mud is active clay, and inert solids like barite are used for enhancing the mud weight. As mentioned earlier, the mud arriving at the surface from the bottom while drilling is in progress contains active and inactive drilled solids. Hence, the low gravity solids must be removed first, using a screen, because their disintegration reduces the particle size to less than that of barite or in the similar range. This may cause a loss of costly barite if the mud is subjected to solids control. Once the larger particles are removed the mud must be passed through mud cleaner, where the hydrocyclones are used in series with screens. This system works best for muds with density less than 15.0 lbm/gal.
Continue reading “SOLIDS CONTROL EQUIPMENT FOR WEIGHTED MUDS”
Solids Control Equipment for an Un-weighted Drilling Fluid System
The un-weighted muds are the ones that do not contain any weighting materials such as barite or lead sulfide. This is the type of mud that is usually used for drilling shallow formations. The cuttings comprise active solids like clay that hydrate and inert solids like sand, silt, limestone, feldspar and small quantity ofAmerican Petroleum Institute (API) barite. Apart from the API barite which may be used for density control, the other solids are abrasive, and tend to increase frictional pressure loss during fluid flow, increase viscosity and form thick permeable cakes. This may lead to stuck-pipe, excessive torque and drag, lost circulation, and poor cementation. The inert solids are removed from the drilling fluids by using solids control equipment like shale shaker, desanders, desilters (hydrocyclones and decanting centrifuges) in that order. The active solids, like clays, are removed by using chemical flocculant or by diluting the fluid with water.
Continue reading “Solids Control Equipment for an Un-weighted Drilling Fluid System”
Prdocution / Plugging Screen Test (PST) Guidelines
The 6 1/8” section is drilled as high slanted 84º in lower reservoir to get more exposure with production zone. After drilling, pressure points were taken to design completion fluid along with roller reamer to make sure hole is smooth. Production / plugging screen test (PST) is performed for the Reservoir Drilling Fluid (RDIF) prior to run ICD (Inflow Control Device) screens to make sure that, solids present in RDIF should not plug screens.
Continue reading “Prdocution / Plugging Screen Test (PST) Guidelines”