TANK ARRANGEMENT-2

1.5 Equalization
Most compartments should have an equalizing line, or opening, at the bottom. Only the first compartment, if it is used as a settling pit (sand trap), and the degasser suction tank (typically the second compartment) should have a high overflow (weir) to the compartment downstream.
The size of the equalizing pipes can be determined by the following formula:
Pipe diameter=√Max. Circulation Rate; gpm/15
A pipe of larger diameter can be used, since solids will settle and fill the pipe until the flow velocity in the pipe is adequate to prevent additional settling (5 ft/sec).
An adjustable equalizer is preferred between the solids-removal and additions sections. The lower end of an L-shaped, adjustable equalizer, usually field fabricated from 13-inch casing, is connected to the bottom of the last compartment in the removal section. The upper end discharges fluid into the additions section and can be moved up or down. This controls the liquid level in the removal section and still permits most of the fluid in the suction section to be used.
1.6 Surface tank
Most steel pits for drilling fluid are square or rectangular with flat bottoms. Each tank should have adequate agitation except for settling tanks. Additionally, each tank should have enough surface area to allow entrained air to leave the drilling fluid. A rule of thumb for calculating the minimum active surface pit area is:
Area, ft^2=Flow rate (gpm)/40
For example, if the active circulating rate is 650 gpm, the surface area of each active compartment should be about 16 square feet. The depth of a tank is a function of the volume needed and ease of stirring. Tanks that are roughly cubical are most efficient for stirring. If this is not convenient, the depth should be greater than the length or width. If circular tanks are used, a conical bottom is recommended and centrifugal pump suction and/or a dump valve should be located there. Another consideration is that the tanks need to be deep enough to eliminate the possibility of vortexing at the centrifugal pump suction. The depth required is a function of the velocity of the drilling fluid entering the suction lines (Figures 5.3, 5.4, 5.5, and 5.6).

1.7 Sand trap
After the drilling fluid passes through the main shaker, it enters the mud pit system. When screens 80-mesh and coarser were routinely used, the sand trap performed a very useful function. Large, sand-size particles would settle and could be dumped overboard. The bottom of a sand trap should be sloped at about 45° to facilitate quick dumping. A sloped bottom 45° or greater will self-clean when dumped. The sand trap should not be agitated and should overflow into the next compartment. Linear
and unbalanced elliptical motion shale shakers have all but eliminated this technique. Small drilled solids generally do not have sufficient residence time to settle. When inexpensive drilling fluid was used, sand traps were dumped once or twice per hour. Today, in the era of fine-mesh screens,expensive waste disposal, and environmental concerns, such dumping is either not allowed or is cost prohibitive.
The preceding illustrations show the solids-removal system with a sand trap. Rigs currently operating may or may not have sand traps. If a rig does not have a sand trap, then the shakers would have their underflow directed to the degasser suction pit and all other functions would remain as illustrated.
1.8 Degasser suction and discharge pit
For proper operation of a vacuum-type degasser, the suction pit should be the first pit after the sand trap, or if no sand trap is present, then the first pit. This pit should typically be agitated in order to help roll the drilling fluid and break out as much gas, if present, as possible. The processed fluid flows into the next pit downstream. There needs to be a high equalizer or weir between these two tanks.
The degasser discharge pit is also the suction pit for the centrifugal pump used to pump drilling fluid through the eductor on the degasser. This is commonly called power mud. Pumping power mud through the eductor actually pulls the fluid out of the degasser vessel from the degasser suction pit and out to the discharge line due to the Bernoulli effect, causing a low-pressure zone in the eductor. The discharge from the eductor goes back into the same tank used for the suction for the power mud.
The reason that mud is sucked into the vacuum degasser and through the degasser vessel is that a centrifugal pump will not pump gaseous mud; therefore it cannot be pumped through the vessel and has to be sucked into it. (For complete information on operation of degassers, refer to Chapter 9 (Gas Busters, Separators, and Degassers) in this book.)
1.9 Desander suction and discharge pit
The degasser discharge pit is also the suction pit for the desander. The desander, as well as the desilter, needs to be downstream of the degasser operation. If the hydrocyclone suction is upstream of the degasser operation and gas is present in the mud, the efficiency of the centrifugal pump will be reduced, or the pump will become gas locked and simply not pump any mud. Additionally, induced cavitation can occur and cause premature wear to the centrifugal pump. This wear can be rapid
and severe.
The desander discharge (cone overs) should flow into the next pit downstream, and a low equalizer between these tanks should be opened. This allows backflow through the equalizer when the cone manifold is processing a greater volume than is entering the tank (recommended). This ensures that all of the drilling fluid is processed through the desander manifold.
Desander operation is typically recommended only for unweighted drilling fluids. If operated with weighted drilling fluid, the desander will discard a lot of drilling fluid away, including a lot of weight material.
1.10 Desilter suction and discharge pit (mud cleaner /conditioner)
The desilter suction pit is the desander discharge pit. The desilter will remove smaller particles than the desander, so its operation is downstream of the desander. Setup and operation of desilters are the same as with desanders. The manifold discharge is downstream of the suction, with a low equalizer between the two tanks. It is recommended that the desilter process more volume than the rig is pumping so that there is a backflow through the equalizer, ensuring that all of the drilling fluid is
processed.
If drilling fluid is being pumped through mud guns from the suction compartment downstream, this fluid must also be processed through the hydrocyclones. For weighted drilling fluids, the underflow of the desilter cones is processed by a shaker. Ideally this shaker will have screens installed that allow the weight material to pass through while rejecting any drilled solids larger than the weight material.
1.11 Centrifuge suction and discharge pit
Centrifuge suction is taken from the pit that the desilter manifold discharges into (for unweighted drilling fluids). The drilled solids removed by the centrifuge are discarded, and the cleaned drilling fluid is returned to the active system in the next pit downstream.
For a weighted aqueous drilling fluid, the solids separated by a centrifuge are composed largely of weight material (assuming upsteam processing has been performed correctly) used to increase the density of the drilling. This solids discharge (centrate or cake) is returned to the active system and the effluent or liquid discharge is discarded. The effluent contains the fine particles (colloidal or clay size) that will cause rheological problems with the drilling fluid if allowed to accumulate to a
high enough concentration.
For a weighted nonaqueous drilling fluid, it is not feasible to discharge the effluent from a centrifuge, due to environmental and/or economic concerns. In this situation, a dual centrifuge setup is utilized in which the first centrifuge operates at a lower g setting (usually 600–900 g) and the weight material (which is easy to separate due to its higher specific gravity) is returned to the active system. The effluent from the first centrifuge typically flows to a holding tank, and this fluid is not processed by a second centrifuge operating at a higher g force in order to separate finer solids, which are discarded. The solids from the second centrifuge typically are not in the size range that would cause rheological problems, but given time they will degrade into smaller particles that could start causing problems. Therefore, they need to be removed while the equipment can still remove them. The effluent from the second centrifuge is then returned to the active system.

Tank arrangement

The purpose of a drilling rig surface fluid processing system is to provide a sufficient volume of properly treated drilling fluid for drilling operations. The active system should have enough volume of properly conditioned drilling fluid above the suction and equalization lines to keep the well bore full during wet trips.
The surface system needs to have the capability to keep up with the volume-building needs while drilling; otherwise, advanced planning and premixing of reserve mud should be considered. This should be planned for the worst case, which would be a bigger-diameter hole in which high penetration rates are common. For example for a 14-3/4-inch hole section drilling at an average rate of 200 ft/hr and with a solids-removal efficiency of 80%, the solids-removal system will be removing approximately 34 barrels of drilled solids per hour plus the associated drilling fluid coating these solids. More than likely, 2 barrels of drilling fluid would be discarded per barrel of solids. If this is the case, the volume of drilling fluid in the active system will decrease by 102 barrels per hour. If the rig cannot mix drilling fluid fast enough to keep up with these losses, reserve mud and or premixed drilling fluid should be available to blend into the active system to maintain the proper volume.
The surface system should consist of three clearly identifiable sections (Figure 5.1):

. Suction and testing section
. Additions section
. Removal section
1.ACTIVE SYSTEM
1.1 Suction and Testing Section
The suction and testing section is the last part of the surface system. Most of the usable surface volume should be available in this section. Processed and treated fluid is available for various evaluation and analysis procedures just prior to the fluid recirculating downhole. This section should be mixed, blended, and well stirred. Sufficient residence time should be allowed so that changes in drilling-fluid properties may be made before the fluid is pumped downhole. Vortex patterns from agitators should be inhibited to prevent entraining air in the drilling fluid.
In order to prevent the mud pumps from sucking air, vertical baffles can be added in the tank to break up the possible vortex patterns caused by the agitators. If the suction tank is ever operated at low volume levels, additional measures should be taken to prevent vortexing, such as adding a flat plate above the suction line to break up the vortex pattern.
Proper agitation is very important, so the drilling fluid is a homogeneous mixture in both the tank and the well bore. This is important because if a ‘‘kick’’ (entrance of formation fluid into the well bore due to a drop in hydrostatic pressure) occurs, an accurate bottom-hole pressure can be calculated. The well-control procedures are based on the required bottom-hole pressure needed to control the formation pressures. If this value is not calculated correctly, the well bore will see higher than
necessary pressures during the well-control operation. With higher than required pressure, there is always the risk of fracturing the formation. This would bring about additional problems that would be best avoided whenever possible. For agitator sizing, see Chapter 10 on Agitation.
1.2 Additions Section
All commercial solids and chemicals are added to a well-agitated tank upstream from the suction and testing section. New drilling fluid mixed on location should be added to the system through this tank. Drilling fluid arriving on location from other sources should be added to the system through the shale shaker to remove unwanted solids.
To assist homogeneous blending, mud guns may be used in the additions section and the suction and testing section.
1.3 Removal Section
Undesirable drilled solids and gas are removed in this section before new additions are made to the fluid system. Drilled solids create poor fluid properties and cause many of the costly problems associated with drilling wells. Excessive drilled solids can cause stuck drill pipe, bad primary cement jobs, or high surge and swab pressures, which can result in lost circulation and/or well-control problems. Each well and each type of drilling fluid has a different tolerance for drilled solids.
Each piece of solids-control equipment is designed to remove solids within a certain size range. Solids-control equipment should be arranged to remove sequentially smaller and smaller solids. A general range of sizes is presented in Table 5.1 and in Figure 5.2.

Equipment Size Median Size of Removed Microns
Shale Shakers API 80 screen 177
  API 120 screen 105
  API 200 screen 74
Hydrocyclones (diameter) 8-inch 70
  4-inch 25
  3-inch 20
Centrifuge    
Weighted mud   >5
Unweighted mud   <5

The tanks should have adequate agitation to minimize settling of solids and to provide a uniform solids/liquid distribution to the hydrocyclones and centrifuges. Concerning the importance of proper agitation in the operation of hydrocyclones, efficiency can be cut in half when the suction tank is not agitated, versus one that is agitated. Unagitated suction tanks usually result in overloading of the hydrocyclone or plugged apexes. When a hydrocyclone is overloaded, its removal efficiency is reduced. If the apex becomes plugged, no solids removal occurs and its efficiency then becomes zero. Agitation will also help in the removal of gas, if any is present, by moving the gaseous drilling fluid to the surface of the tank, providing an opportunity for the gas to break out.
Mud guns can be used to stir the tanks in the additions section provided careful attention is paid to the design and installation of the mud gun system. If mud guns are used in the removal section, each mud gun should have its own suction and stir only that particular pit. If manifolding is added to connect all the guns together, there is a high
potential for incorrect use, which can result in defeating proper sequential separation of the drilled solids in an otherwise well-designed solids removal setup. Manifolding should be avoided.
1.4 Piping and Equipment Arrangement
Drilling fluid should be processed through the solids-removal equipment in a sequential manner. The most common problem on drilling rigs is improper fluid routing, which causes some drilling fluid to bypass the sequential arrangement of solids-removal equipment. When a substantial amount of drilling fluid bypasses a piece or pieces of solids-removal equipment, many of the drilled solids cannot be removed. Factors that contribute to inadequate fluid routing include ill-advised manifolding of
centrifugal pumps for hydrocyclone or mud cleaner operations, leaking valves, improper setup and use of mud guns in the removal section, and routing of drilling fluid incorrectly through mud ditches.
Each piece of solids-control equipment should be fed with a dedicated, single-purpose pump, with no routing options. Hydrocyclones and mud cleaners have only one correct location in tank arrangements and therefore should have only one suction location. Routing errors should be corrected and equipment color-coded to eliminate alignment errors. If worry about an inoperable pump suggests manifolding, it would be cost saving to allow easy access to the pumps and have a standby pump
in storage. A common and oft-heard justification for manifolding the pumps is, ‘‘I want to manifold my pumps so that when my pump goes down, I can use the desander pump to run the desilter.’’ What many drilling professionals do not realize is that improper manifolding and centrifugal-pump operation is what fails the pumps by inducing cavitation. Having a dedicated pump properly sized and set up with no opportunity for improper operation will give surprisingly long pump life as well as process the drilling fluid properly.
Suction and discharge lines on drilling rigs should be as short and straight as possible. Sizes should be such that the flow velocity within the pipe is between 5 and 10 ft/sec. Lower velocities will cause settling problems, and higher velocities may induce cavitation on the suction side or cause erosion on the discharge side where the pipe changes direction. The flow velocity may be calculated with the equation:
Velocity, ft/sec=Flow rate, gpm/2.48(insided diameter in)^2
Pump cavitation may result from improper suction line design, such as inadequate suction line diameter, lines that are too long, or too many bends in the pipe. The suction line should have no elbows or tees within three pipe diameters of the pump section flange, and their total number should be kept to a minimum. It is important to realize that an 8-inch, 90° welded ell has the same frictional pressure loss as 55 feet of straight 8-inch pipe. So, keep the plumbing fixtures to a minimum.

CUT POINTS

Cut points are used to indicate the separation characteristics of solids control equipment at a given moment in time. The performance of the equipment, in addition to the condition of the drilling fluid, should be taken into consideration in the assessment of cut point data. Cut point curves are derived from the collected data and indicate, at the actual moment of data collection, the percentage of chance that a particle of a particular size can flow through or be discarded by the solids-control equipment. Therefore, the cut point curve is a function of the physical properties of the solids (i.e., density), particle size distribution of the solids, physical condition of the solids-control equipment (i.e., sealing capabilities), and the drilling-fluid properties.
Cut points may be determined for all drilled-solids removal equipment. The mass flow rate of various-size particles discarded from the equipment is compared with the mass flow rate of the same-size particles presented to the equipment. When testing a particular unit, knowledge of the feed flow rate to the unit and the two discharge flow rates are required. The density of the feed flow multiplied by the volume flow rate provides the mass flow rate into the unit. Discharge mass flow rates are also calculated by multiplying the density of the stream by the volume flow rate. Obviously, the sum of the discharge mass flow rates must be equal to the feed mass flow rate. Usually one of the discharge flow streams is discarded and the other is retained in the drilling fluid.The material balance—both the volume flow rate balance and the mass flow rate balance—should be verified before measuring the particle sizes of the various streams.
Solids-removal equipment removes only a very small fraction of the total flow into the equipment. For example, a 4-inch desilter processing about 50 gpm of drilling fluid will discard only about 1 gpm of material. Since the discarded material is such a small proportion of the total material processed, the difference between the retained stream and the feed stream is difficult to measure. For this reason, more accurate data are acquired by mathematically adding the value of the discarded solid concentrations to that of the retained solids concentration to determine the feed solids concentration.
To determine the mass flow of a particular-size particle in the feed (or retained) stream and the mass flow of the same-size particle in the discard, flow rate measurements and solids concentrations are needed. The discard volume flow rates are normally relatively low, but the feed rates require using a flow meter or a positive displacement pump.
For shale shakers, the feed to the shaker will be the circulating rate coming from the well. Mud pumps must be calibrated to provide an accurate feed rate. While drilling, move the suction from the suction tank to the slug tank and measure the rate of drop of the fluid leaving the slug pit. The fluid in the slug tank will contain liquid and gas (or air), so the volume percentage of (%vol) gas must be subtracted from the volume of fluid leaving the slug tank. The %vol gas is calculated by dividing the difference between the pressurized mud weight and the unpressurized mud weight by the pressurized mud weight and multiplying by 100. If the desilters or centrifuges are fed by centrifugal pumps, some type of flow meter will be required to accurately determine the feed rate. The flow meter could be a large container whose volume is calibrated and a stopwatch. A centrifuge underflow volume flow rate is difficult to measure because of the high concentration of solids. A barrel or other large container can be split vertically and support beams or pipes welded to provide a support when the container is placed across the top of a mud tank. Calibrated lines are painted inside of the container to provide volume measurements. A quantity of water is placed in the container and the container is positioned adjacent to a decanting centrifuge mounted on top of a mud tank. The stopwatch is started when the container is pushed under the centrifuge, and the rate of water level is observed.
The known volume between lines and the time permit calculation of the volume discard rate. Representative samples of the underflow or heavy slurry provide the density measurements of the underflow. After confirming that there is a mass and volume flow balance with the measured values, the particle sizes in the discharge streams are determined.
All of the discard stream may be captured for analysis during a period of several minutes. The contents of the feed stream during that period must be known so that the ratio of discard to feed particle mass can be determined for various particle sizes. The feed stream and retained stream for shakers and desilters, however, would require much larger containers, and it is impractical to try to weigh or measure their volumes directly. Representative samples of the retained stream must be used to determine the mass of various-size particles.
With the centrifuge and the desilters, the particle sizes must be measured with an instrument that discerns particle sizes as small as 1 micron. With the shaker measurements, sieves may be used because the cut point range will be within the range of screens standardized by the American Society for Testing and Materials (ASTM). A variety of different laboratory devices are available that measure small-diameter particles. Instruments using lasers are popular in many laboratories.
The discard sample will contain the solids and the liquid phase of the drilling fluid. With the shale shaker discard, the mass of solids retained on each ASTM test screen may be measured directly by weighing the solids after they are dried. With the desilter underflow and the centrifuge underflow (or heavy slurry) discharge, the density of the solids must be used to determine the mass percentage of solids.
Cut points for shale shakers are measured by determining the particle size distribution of the feed and discard streams with the use of a stack of U.S. Standard Sieves. The flow rate of each stream is determined, and the mass flow rate for each sieve size in each stream is calculated. The mass flow rate of the discard stream for each sieve size is divided by the mass flow rate for the same size introduced into the equipment in the feed stream.
Using this method, the feed-stream sample represents a small fraction of the total overall flow. This can create a problem with material balances. A better method is to sample the discard and underflow streams. Combining these two solids distributions will yield a more accurate cut point curve. This method can be used on solids-control equipment in which the feed-stream flow rate is greater than the discard stream.
Samples of the discard and underflow streams are taken from the solids-control equipment for analysis. The density of all streams is measured. The volume flow rate of the discard stream is measured by capturing all of the discard stream in a container—a section of gutter works well at the discard end of a shaker screen. The volume flow rate of the discard stream is determined by multiplying the mass of fluid captured by the density, or mud weight, of the discard. The volume flow rate of the feed is determined by accurately measuring the flow rate from the rig pump. The mass flow rate of the feed is calculated by multiplying the density of the drilling fluid by the circulating flow rate. Each sample is wet sieved over a stack of U.S. Standard Sieves with a broad distribution of sizes. The excess drilling fluid is washed through the screen with the liquid phase of the drilling fluid. The samples at each individual sieve size are thoroughly dried. Weights of the solids retained at each individual sieve size are measured, and the flow rate for each stream at each individual sieve size is calculated. To determine the screen cut point curve, the quantity of a particular-size particle in the discard must be compared with the quantity of the same-size particles presented to the screen. All of the discard can be captured, and all of the mass of the discard solids of a particular size can be determined. However, it is impractical to try to capture and sieve all of the fluid passing through the screen during the period that the discard is being captured. For example, if the rig flow is 500 gpm and the discard sample is captured during a 3.50-min period, the underflow through the shaker screen would be 1750 gal. If the mud weight is 9.2 ppg, this means that 16,100 lb of drilling fluid has passed through the screen. A 9.2-ppg drilling fluid with no barite and 2.6 specific-gravity low-gravity solids would have 6.5% volume of solids. The total solids that would be presented to the screen during the 3.5-min period would be 113.75 gal [6.5% of 1750 gal] or 2467 lb of solids [(114 gal)(2.6)(8.34 ppg)]. Since it is not practical to capture and sieve this quantity of solids, a representative sample of the underflow through a screen can be used to determine the solids concentration and sizes that did pass through the screen. The flow rate of the underflow sample and the dry weight of the individual sieve sizes must be measured. This is the reason that flow rates of the dry solids are used in the calculations instead of using all of the solids captured in a specific time interval.
The corresponding feed mass flow rate (sum of discard and under flowrates) for each individual sieve size is also determined. The ratio of the discard and the feed flow rates at each sieve size determines the percentage of solids discarded over the solids-control equipment. The size of the sieves (expressed in microns) versus the percentage of solids removed produces a cut point curve.
A cut point curve graphically displays the fraction of various-size particles removed by the solids-control equipment compared with the quantity of that size of particle presented to the equipment. For example, a D50 cut point is the intersection of the 50% data point on the Y axis and the corresponding micron size on the X axis on the cut point graph. This cut point indicates the size of the particle in the feed to the solids control equipment that will have a 50% chance of passing through the equipment and a 50% chance of discharging off of the equipment. Frequently, solids-distribution curves are erroneously displayed as cut point curves. Cut point curves indicate the fraction of solids of various sizes that are separated. They also are greatly dependent on many drilling-fluid factors and indicate the performance of the complete solidscontrol device only at the exact moment in time of the data collection. The cut points of the solids-control equipment will be determined by the physical condition of the equipment and the properties of the drilling fluid.
Following is a procedure detailing the required steps to perform this method of particle-size analysis and the calculations used to create a cut point curve. An example of data collected and analyzed using a shale shaker is included after the detailed procedure. The example demonstrates useful information that can be obtained by following the procedure. This procedure is most applicable to performing cut point analysis with a shale shaker. Therefore, the example data measure solids to only 37 microns (No. 400 sieve).
Calculating cut point curves for hydrocyclones and centrifuges should use methods other than sieving. Measurements with a No. 635 sieve (20 microns) is about the limit of sieve analysis, but information is required about particles much smaller. Particle size analysis equipment, such as laser diffraction, is required for measurements of smaller sizes of solids. However, the assumption that the solids being analyzed have a constant density would have to be made.