Cuttings injection system is used to inject particles into the mud system before test section stream flow. Two control valves as shown in Figure 1 were used to separate the injection system from main flow line.
Drilling Solids Removal Theory -Basic Knowledge
Drilling fluid maintenance costs can decrease greatly when proper solids control techniques are utilized. From a fluid control standpoint, it would be desirable in most cases to remove all drilled solids. Although this is possible with the use of chemical enhancement prior to separation, it is not always the most economical approach. The goal of a solids control system is to achieve the balance between mechanical solids separation and dilution that will result in drill solids being maintained at an acceptable level with the minimum cost.
Continue reading “Drilling Solids Removal Theory -Basic Knowledge”
Fundamentals of Drilling Fluids
A major component in drilling operation success is drilling fluid performance. The cost of searching for hydrocarbon reserves becomes more expensive when drilling occurs offshore, in deep water, and in hostile environments. These drilling environments require fluids that excel in performance. Measuring fluid performance requires the evaluation of all key drilling parameters and their associated cost. Simply stated, the effectiveness of a fluid is judged by its influence on overall well cost. This chapter discusses the various fundamentals of drilling fluids and their performance in assuring a safe and expeditious drilling operation at minimum overall cost.
Drilling Cuttings Separation
Mineralogy of Cuttings
Drill cuttings are particles of crushed rock produced by the grinding action of the drill bit as it penetrates into the earth. Drill cuttings range in size from clay-sized particles (~ 2 μm) to coarse gravel (> 30 mm) and have an angular configuration. Their chemistry and mineralogy reflect that of the sedimentary strata being penetrated by the drill.