Drilling waste consists of waste drilling fluid, drilled cuttings with associated drilling fluid, and, to a lesser extent, miscellaneous fluids such as excess cement, spacers, and a variety of other fluids. The amount of drilling waste depends on a number of factors. These include hole size, solidscontrol efficiency, the ability of the drilling fluid to tolerate solids, the ability of the drilling fluid to inhibit degradation or dispersion of drilled cuttings, and the amount of drilling fluid retained on the drilled cuttings.
EXAMPLES FOR SOLIDS REMOVAL EQUIPMENT EFFICIENCY
What is the solids removal equipment efficiency?
This exercise involves the cost benefit of increasing solids removal equipment efficiency to 80% for the 4%vol drilled-solids concentration: With 80% removal efficiency and 1143 bbl of drilled solids reporting to the surface, 914 bbl would be discarded and 229 bbl returned to the pits. The drilling fluid needed to dilute the 229 bbl to 4%vol would require adding (229 bbl / 0.04), or 5725 bbl of new drilling fluid. This 5725 bbl would consist of 229 bbl of drilled solids and 5496 bbl of clean drilling fluid.
Continue reading “EXAMPLES FOR SOLIDS REMOVAL EQUIPMENT EFFICIENCY”
REMOVAL EQUIPMENT EFFICIENCY ON WEIGHTED DRILLING FLUID
After drilling 1000 ft of hole with a 12.5-lb / gal drilling fluid circulated at 25 bbl / min, the hole was circulated clean. This required four hole volumes to eliminate all solids in the discard. Assuming that the formation averaged about 13%vol porosity, a multiarmed caliper indicated
that a volume of 97.3 bbl of new hole was drilled. The drilling fluid was freshwater-based mud weighted with barite and contained 2%vol bentonite, no oil, and 5%vol drilled solids. While drilling this interval, 1350 sacks (sx) of barite (100 lb / sx) were added to the system, and the drilled solids remaining in the system were diluted as required to control their concentration at the targeted 5%vol. Some drilling fluid was pumped to the reserve pits, and all discards of the solids-control equipment were captured in a container to be shipped back to shore. One drilling-fluid technician reported that 200 bbl were hauled to shore, and another reported that 180 bbl were captured.
Continue reading “REMOVAL EQUIPMENT EFFICIENCY ON WEIGHTED DRILLING FLUID”
Maintain Drilled Solids
If the mechanical equipment does not remove a significant portion of the drilled solids reporting to the surface, it can become very expensive to maintain a reasonable level of undesirable drilled solids. Dilution, then, becomes a major portion of the solids-management strategy. Calculations indicate the performance of the solids-removal equipment.