Drilling Cuttings Separation

Mineralogy of Cuttings

Drill cuttings are particles of crushed rock produced by the grinding action of the drill bit as it penetrates into the earth. Drill cuttings range in size from clay-sized particles (~ 2 μm) to coarse gravel (> 30 mm) and have an angular configuration. Their chemistry and mineralogy reflect that of the sedimentary strata being penetrated by the drill.

Solids control equipment separating cuttings
Figure 1. Separation of WBM and cuttings is mainly based on particle size and relies on shale shakers, hydrocyclones (mud cleaner), and occasionally a decanting centrifuge. Most cuttings are sand/gravel-sized and are easily recovered on the shale shaker. However, silt- and clay-sized cuttings are difficult to separate from the barite and bentonite of WBM; hydrocyclones and centrifuges may be required.

Continue reading “Drilling Cuttings Separation”

Sources of Drilling Waste Toxicity

There are three contributing factors of toxicity in drilling waste: the chemistry of the mud formulation, inefficient separation of toxic and non-toxic components and the drilled rock. Typically, the first mechanism is known best because it includes products deliberately added to the system to build and maintain the rheology and stability of drilling fluids. The technology of mud mixing and treatment is recognized as a source of pollutants such as barium (from barite), mercury and cadmium (from barite impurities), lead (from pipe dope), chromium (from viscosity reducers and corrosion inhibitors), diesel [from lubricants, spotting fluids, and oil-based mud (OBM) cuttings] and arsenic and formaldehyde (from biocides).

Continue reading “Sources of Drilling Waste Toxicity”