Shale shaker design-vibrating system

The type of motion imparted to the shale shaker depends on the location, orientation, and number of vibrators used. In all cases, the correct direction of rotation must be verified.
Unbalanced elliptical motion shakers use a single vibrator mounted above the shale shaker’s center of gravity. Integral vibrators, enclosed vibrators, and belt-driven vibrators are used for this shale shaker design.
Circular motion shale shakers use a single vibrator mounted at the shale shaker’s center of gravity. Belt-driven vibrators and hydraulic-drive vibrators are used for this shale shaker design.
Most linear motion shakers use two vibrators rotating in opposite directions and mounted in parallel, but in such a manner that the direction and angle of motion is achieved. Integral vibrators, enclosed vibrators, belt-driven vibrators, and gear-driven vibrators are used for this shale shaker design.
Balanced elliptical motion shakers use two vibrators rotating in opposite directions but at a slight angle to each other so that they are not parallel. These vibrators must be oriented correctly to achieve the direction and angle of motion desired. The elliptical motion traces must all lean toward the discharge end and not backward toward the possum belly. If two vibrators of different masses are mounted in the same manner as the linear motion vibrators (i.e., parallel), a balanced elliptical motion is also achieved.
Various vibrating systems are used on shale shakers. These systems include:
1. Integral vibrator: The eccentrically weighted shaft is an integral part of the rotor assembly in that it is entirely enclosed within the electric motor housing.
2. Enclosed vibrator: This is a double-shafted electric motor that has eccentric weights attached to the shaft ends. These weights are enclosed by a housing cover attached to the electric motor case.
3. Belt-driven vibrator: The eccentrically weighted shaft is enclosed in a housing and a shaft is attached to one end. A sheaved electric motor is used to rotate the shaft with a belt drive. The electric motor may be mounted alongside, above, or behind the shaker, depending on the model. It may also be mounted on the shaker bed along with the vibrator assembly.
4. Dual-shafted, belt-driven vibrator: This system is similar to that of the belt-driven vibrator except that it has two vibrator shafts rotating in opposite directions and is driven by one electric motor with a drive belt.
5. Gear drive: A double-shafted electric motor drives a sealed gearbox, which in turn rotates two vibrator shafts in opposite directions.
6. Hydraulic drive: A hydraulic drive motor is attached directly to a vibrator shaft, which is enclosed in a housing. The hydraulic motor must have a hydraulic power unit that includes an electric motor and a hydraulic pump. The hydraulic-drive motor powers the vibrator shaft.

Shale shaker design -shape of Motion

Historically, the progression of the design of shale shakers has been toward allowing the use of finer screens. Shale shakers have developed through the years from relatively simple, uncomplicated designs to today’s complex models. In fact, this evolutionary process has seen several distinct eras of shale shaker technology and performance. These developmental time frames can be divided into four main categories:
1. Unbalanced elliptical motion
2. Circular motion
3. Linear motion
4. Balanced elliptical motion
The eras of oilfield shaker (and screening) development may be defined by the types of motion(s) produced by the vibrators and their associated machines.
If a single rotating vibrator is located away from the center of gravity of the basket, the motion is elliptical at the ends of the deck and circular below the vibrator (Figure 7.5). This is an unbalanced elliptical motion. If a single

rotating vibrator is located at the center of gravity of the basket, the motion is circular (Figure 7.6). Two counterrotating vibrators attached to the basket are used to produce linear motion (Figure 7.7).


When placed at an angle to the basket, two counterrotating vibrators can produce a balanced elliptical motion (Figure 7.8).


1. Unbalanced Elliptical Motion Shale Shakers
In the 1930s, unbalanced elliptical shale shakers were adapted by the oilfield. These first shakers came from the mineral ore dressing industries (e.g., coal, copper) with little or no modifications. They were basic, rugged, and mechanically reliable but were generally limited to API 20 and coarser screens.
In an unbalanced elliptical motion shaker (Figure 7.5), the movement of the shaker deck/basket is accomplished by placing a single vibrator system above the shaker deck. That is, the mechanical system of a spinning counterweight (or an elliptically shaped driveshaft) is installed above the center of gravity of the deck. The resulting motion imparted to the bed is a combination of elliptical and circular. Directly below the vibrator, the motion of the basket is circular, while at either end of the deck the motion is elliptical.
The orientation of the major axes of the ellipses formed at the feed end and the solids-discharge end of the basket has a major impact on solids conveyance. Specifically, it is desirable for the major axis of the ellipsoidal trace to be directed toward the solids-discharge end. However, the orientation of the major axis of the ellipse formed at the solidsdischarge end is just the opposite; it is directed backward toward the feed end. This discharge-end thrust orientation is undesirable, since it makes discharging solids from the shaker more difficult (Figure 7.9). To assist in solids conveyance, the deck or last screen is tilted downward (Figure 7.10) or the vibrator is moved to the discharge end. Moving the vibrator toward the discharge end reduces the fluid capacity and reduces the screen life of the end screen significantly. This also reduces the residence time of the feed slurry on the screening surface. Advertisers of this style of motion touted the fact that the reverse-tilted ellipse allowed solids to remain on the screen longer, thereby removing more liquid.


Early elliptical motion shale shakers used hook-strip screens that were manually tensioned. A series of tension rails and tension bolt spring assemblies were used to pull the screens tightly over the support bars to ensure proper tightening. Pretensioned screens and pretensioned screen panels were not introduced until the 1970s and even then were not commonly used on elliptical motion units.
As with most engineered products, compromises have been made. Achievement of an acceptable balance is sought between the amount of feed slurry the shaker can handle and its ability to effectively move solids along the screen deck. The early elliptical motion shakers typically had one screen surface driven by a motor sheaved to the vibrator with a belt drive. Later models of this design employed additional screen area and/or integral vibrators to increase flow capacity. These shakers were
capable of processing drilling fluid through API 60 to API 80 screens.
Unbalanced elliptical motion shale shakers are compact, easy to maintain, and inexpensive to build and operate. They use relatively coarse screens (API 60 to API 80), and for this reason are frequently used as scalping shakers. Scalping shakers remove large solids or gumbo and reduce solids loading on downstream shakers.
2. Circular Motion Shale Shakers
Circular motion shakers were introduced in 1963. These shakers have a single vibrator shaft located at the center of mass of a horizontal basket. A motor drives a concentric shaft fitted with counterweights, which provides pure circular motion along the entire length of the vibrating deck. This feature improves solids conveyance off the end of the deck compared with unbalanced elliptical designs. The circular motion transports solids along a horizontal screen, thus reducing the loss of liquid without sacrificing solids conveyance.
Circular motion units often incorporate multiple, vertically stacked decks. Coarse screens mounted on the top deck separate and discharge the larger cuttings, thus reducing solids loading on the bottom screens. These multiple deck units allowed the first practical use of API 80 to API 100 screens.


Flowback trays (Figure 7.11) introduced in the late 1970s direct the slurry onto the feed end of the finer screen on the lower deck. The tray allows full use of the bottom screen area to achieve greater cuttings removal with less liquid loss. Even with these units, screens are limited to about API 100 by the available screening area, vibratory motion, and screen panel design. If bonded screens are used, screens as fine as API 150 have been used with flowback trays.
Screens on the circular motion units are installed either overslung or underslung. The open hook strip screen is tensioned across longitudinal support members. Both designs have advantages and disadvantages. Overslung screens have reasonable screen life, but the drilling fluid tends to channel to the sides. On underslung screens, drilling fluid tends to congregate around and beneath the longitudinal support members. Grinding of this accumulation of drilled solids between the rubber
support and the screen tends to reduce screen life. To overcome this screen life reduction, rubber supports with flatter cross sections are used and strips are installed between the rubber support and the screen.
In the 1980s some circular motion machines began to be fitted with repairable bonded underslung screens that increased screen life and fluid throughput. Even though the use of repairable bonded screens reduced the available unblanked area, the detrimental effect on fluid capacity was more than offset by the use of higher-conductance screen cloths and larger bonded openings.
3. Linear Motion Shale Shakers
The introduction of linear motion shale shakers in 1983, combined with improved screen technology, resulted in the practical use of API 200 and finer screens. Linear motion is produced by a pair of eccentrically weighted, counterrotating parallel vibrators. This motion provides cuttings conveyance when the screen deck is tilted upward.
Linear motion shakers have overcome most of the limitations of elliptical and circular motion designs. Straight-line motion provides superior cuttings conveyance (except with gumbo) and superior liquid throughput capabilities with finer screens. Linear motion shale shakers generally do not convey gumbo uphill. They can effectively remove gumbo if they are sloped downward toward the discharge end. The increased physical size of these units (and an accompanying increase in deck screen surface area) allows the use of even finer screens than those used on circular or elliptical motion shakers.
Screening ability is the result of applying the energy developed by a rotating eccentric mass to a porous surface or screen. The energy causes the screen to vibrate in a fixed orbit. This transports solids across the screen surface and off the discharge end and induces liquid to flow through the screen.
In conventional unbalanced elliptical and circular motion designs, only a portion of the energy transports the cuttings in the proper direction, toward the discharge end. The remainder is wasted due to the peculiar shape of the screen-bed orbit, manifested by solids becoming nondirectional or traveling in the wrong direction on the screen surface. Linear motion designs provide positive conveyance of solids throughout the vibratory cycle because the motion is in a straight line rather than elliptical or circular. The heart of a linear motion machine is the ability to generate this straight-line or linear motion and transmit this energy in an efficient and effective manner to the vibrating bed.


As shown in Figure 7.12, a linear motion system consists of two eccentrically weighted counterrotating shafts. The net effect of each equal eccentric mass being rotated in opposite directions is that resultant forces are additive at all positions along the vibratory trace, except at the very top and bottom of each stroke, resulting in a thrust (vibration) along a straight line—hence, the term linear, or straight-line, motion.
To achieve the proper relationship between the rate of solids conveyance and liquid throughput, the drive system must be mounted at an angle to the horizontal bed. A thrust angle of 90 relative to the screen surface would simply bounce solids straight up and down. Taken to the other extreme, a thrust angle of zero degrees would rapidly move solids but yield inadequate liquid throughput and discharge very wet solids. On most units this angle is approximately 45 to the horizontal.(Figure 7.12).
Some machines have adjustable angle drive systems that can be changed to account for various process conditions (Figure 7.13). If a thrust angle were decreased (for example to 30 to the horizontal), the X component of the resultant vibratory thrust (force) would increase and the Y component decrease. Conversely, building a greater angle would cause the X component to decrease and the Y component to increase.


A larger X vector component of thrust will move solids along the deck faster. A larger Y component vector increases liquid throughput and the residence time of material on the screen. Most manufacturers choose a fixed angle near 45, which gives near-equal values for each vector. This is a logical approach, since the shaker must simultaneously transmit liquid through the screen and convey solids off the screen.
The ability to create linear motion vibration allows the slope of the bed to vary up to a þ6 incline (which affects residence time and therefore shaker performance) and to create a liquid pool at the flowline end of the machine. This allows a positive liquid pressure head to develop and help drive liquid and solids through the finer wire cloths. The deck on most linear motion shale shaker designs can be adjusted up to a maximum of þ6. In some cases, the beds can be tilted down to help in cases in which gumbo is encountered. These movements of bed on skid can be accomplished with mechanical, hydraulic, or combination mechanical/hydraulic systems. On some units these adjustments can be made while the unit is running.
The ability of linear motion to convey uphill allows the use of finer shaker screens. Finer screens allow for smaller particles to be removed from the drilling fluid. Hence,a solids-control system that utilizes finescreen linear motion shakers will better maintain the drilling fluid and improve efficiency of downstream equipment such as hydrocyclones and centrifuges. When screens are tilted too much uphill, many solids are ground to finer sizes as they are pounded by the screen. This tends to increase—not decrease—the solids content of the drilling fluid.
When linear motion shale shakers were introduced, other solidsremoval equipment (like the mud cleaner) was sometimes erroneously eliminated. For a short time, this appeared to be a solution, but solids analysis, discards from other equipment, and particle size analyses proved the need for downstream equipment. Linear motion shale shakers should not be expected to replace the entire solids-removal system.
4. Balanced Elliptical Motion shaker
Balanced elliptical motion was introduced in 1992 and provides the fourth type of shale shaker motion. With this type of motion, all of the ellipse axes are sloped toward the discharge end of the shale shaker. Balanced elliptical motion can be produced by a pair of eccentrically weighted counterrotating parallel vibrators of different masses. This motion can also be produced by a pair of eccentrically weighted, counterrotating vibrators that are angled away from each other (Figure 7.14).


The ellipse aspect ratio (major axis to minor axis) is controlled by the angle between vibrators or by different masses of the parallel vibrators.
Larger minor axis angles, or angle of vibrators relative to each other, will produce a broader ellipse and slow the solids conveyance. A thin ellipse with a ratio of 3.5 will convey solids faster than a fat ellipse with a ratio of 1.7. The typical operating range is 1.5 to 3.0, with the lower numbers generating slower conveyance and longer screen life. Balanced elliptical motion shale shakers can effectively remove gumbo if they are sloped downward toward the discharge end in the same manner as the linear motion shakers.
The increased physical size of these units and an accompanying increase in deck screen surface area allows the use of even finer screens than are used on other orbital motion shakers.
In conventional unbalanced elliptical and circular motion designs, only a portion of the energy transports the cuttings in the proper direction toward the discharge end. Balanced elliptical motion transports cuttings toward the discharge end of the screen in the same manner as linear motion. Balanced elliptical motion provides positive conveyance of solids throughout the vibratory cycle.

shale shaker development

Shale shakers have undergone many improvements since the Shale Shaker Handbook was written in the early 1970s. The current design, linear motion shakers, was introduced in the 1980s and has become widely used because of its improved solids conveyance and fluid throughput. The various types of motions are discussed in the next sections. Linear motion has made it possible to move solids toward the discharge end of the deck while it is tilted uphill. The uphill tilt of the deck creates a pool of fluid at the feed end of the deck, which, in combination with the linear motion, exerts greater pressure on the fluid flowing through the screen openings. This allows a finer screen than with all previous shaker designs. The acceleration perpendicular to the screen surface controls the liquid throughput. Orbital (circular or unbalanced elliptical) and linear motion shakers can have the same acceleration (or g factor), but the linear motion shaker can process a greater flow rate. The linear motion conveys solids uphill, whereas orbital motion will not. The uphill solids conveyance allows the linear motion or balanced elliptical motion to process a greater flow rate.
The use of linear motion shakers has become feasible with the development of improved screen designs. The life of shaker screens has been extended with the introduction of repairable bonded and pretensioned screen panels. Other design improvements are available in wire cloth, rectangular weaves, nonmetallic screens, and three-dimensional screen surfaces, which have improved the solids-separation capabilities of all shakers.
Although linear motion shale shakers have made a significant impact on solids-removal concepts, the other shale shakers have many advantageous features. Circular motion is easier on the shale shaker structure and shaker screens and conveys gumbo better than does linear motion. Linear motion shakers require bonded screens of which 30–50% of the area is forfeited. The liquid pool at the back of the linear motion screens can cause solids to be ground up into many smaller particles and forced through the shaker screens. This liquid pool also gives solids slightly finer than the screen openings more of a chance to go through the screen.

Shale shaker limits

A shale shaker’s capacity has been reached when excessive amounts of drilling fluid (or drilling-fluid liquid phase) first begins discharging over the end of the shaker. The capacity is determined by the combination of two factors:
1. The fluid limit is the maximum fluid flow rate that can be processed through the shaker screen.
2. The solids limit is the maximum amount of solids that can be conveyed off of the end of the shaker.
The two limits are interrelated in that the amount of fluid that can be processed will decrease as the amount of solids increases.
Any shale shaker/screen combination has a fluids-only capacity (i.e., no solids are present that can be separated by the screen) that is dependent on the characteristics of the shaker (g factor, vibration frequency, type of motion, and angle of the screen deck), of the screen (area and conductance), and of the fluid properties (viscosity characteristics, density, additives, and fluid type). The mechanical features of the shaker are discussed later in this chapter. The fluid-only capacity is the fluid limit with zero removable solids. For the sake of the current discussion, the drilling fluid is assumed to be a fluid with no solids larger than the openings in the shaker screen, although this is not true in many real instances.
The screen cloth can be considered to be a permeable medium with a permeability and thickness (conductance) and an effective filtration area. The fluid capacity will decrease as the fluid viscosity increases (plastic viscosity is important but yield and gel strengths can have a significant impact as well). Capacity will also increase as the fluid density increases due to increased pressure on the screen surface acting as a force to drive fluid through the screen.
The fluid-only capacity will generally be reduced when certain polymers are present in the fluid. Partially hydrolyzed polyacrylamide (PHPA) is most notable in this respect, as it can exhibit an effective solution viscosity in a permeable medium higher than that measured in a standard viscometer. At one time, the effective viscosity of PHPA solutions was determined by flowing the solution through a set of API 100 screens mounted in a standard capillary viscometer. PHPA drilling fluids typically have a lower fluid-only capacity for a given shaker/screen combination than do similar drilling fluids with PHPA because of this higher effective viscosity. This decrease in fluids-only capacity can be as much as 50% compared with a bentonite/water slurry. Adsorption of PHPA polymer may decrease effective opening sizes (as it does in porous media), thereby increasing the pressure drop required to maintain constant flow. This makes the PHPA appear to be much more viscous than it really is. This effect also happens with high concentrations of XC (xanthan gum, a polysaccharide secreted by bacteria of the genus Xanthomonas campestris) in water-based fluids, in drilling fluids with high concentrations of starch, in newly prepared NAFs, and in polymer-treated viscosifiers in NAFs.
The solids limit can be encountered at any time but occurs most often during the drilling of large-diameter holes and soft, sticky formations and during periods of high penetration rates. A relationship exists between the fluid limit and the solids limit. As the fluid flow rate increases, the solids limit decreases. As the solids loading increases, the fluid limit decreases. Internal factors that affect the fluid and solids limits are discussed in section 7.5, Shale Shaker Design.
The following are some of the major external factors that affect the solids and fluid limits.
1. Fluid Rheological Properties
Literature indicates that the liquid capacity of a shale shaker screen decreases as the plastic viscosity (PV) of a drilling fluid increases. PV is the viscosity that the fluid possesses at an infinite shear rate.(1) Drilling fluid viscosity is usually dependent on the shear rate applied to the fluid. The shear rate through a shale shaker screen depends on the opening size and how fast the fluid is moving relative to the shaker screen wires. For example, if 400 gpm is flowing through a 4*5-ft API 100 market grade (MG) screen (30% open area), the average fluid velocity is only 1.8 inches per second. Generally the shear rates through the shaker screen vary significantly. The exact capacity limit, therefore, will depend on the actual viscosity of the fluid. This will certainly change with PV and yield point (YP).
2.Fluid Surface Tension
Although drilling-fluid surface tensions are seldom measured, high surface tensions decrease the ability of the drilling fluid to pass through a shale shaker screen, particularly fine screens, with their small openings.
3.Wire Wettability
Shale shaker wire screens must be oil wet during drilling with oil-based drilling fluids. Water adhering to a screen wire decreases the effective opening size for oil to pass through. Frequently, this results in the shaker screens not being capable of handling the flow of an oil-based drilling fluid. This is called ‘‘sheeting’’ across the shaker screen, which frequently results in discharge of large quantities of drilling fluid.
4.fluid density
Drilling-fluid density is usually increased by adding a weighting agent to the drilling fluid. This increases the number of solids in the fluid and makes it more difficult to screen the drilling fluid.
5.Solids: Type, Size, and Shape
The shape of solids frequently makes screening difficult. In single-layer screens, particles that are only slightly larger than the opening size can become wedged into openings. This effectively plugs the screen openings and decreases the open area available to pass fluid. Solids that tend to cling together, such as gumbo, are also difficult to screen. Particle size has a significant effect on both solids and liquid capacity. A very small increase in near-size particles usually results in a very large decrease in fluid capacity for any screen, single or multilayer.
Solids compete with the liquid for openings in the shaker screen. Fast drilling can produce large quantities of solids. This usually requires coarser screens to allow most of the drilling fluid to be recovered by the shale shaker. Fast drilling is usually associated with shallow drilling. The usual procedure is to start with coarser-mesh screens in the fast drilling, larger holes near the top of the well and to ‘‘screen down’’ to finer screens as the well gets deeper. Finer screens can be used when the drilling rate decreases.
Boreholes that are not stable can also produce large quantities of solids. Most of the very large solids that arrive at the surface come from the side of the borehole and not from the bottom to the borehole. Drill bits usually create very small cuttings.
7. Hole Cleaning
One factor frequently overlooked in the performance of shale shakers is the carrying capacity of the drilling fluid. If cuttings are not brought to the surface in a timely manner, they tend to disintegrate into small solids in the borehole. If they stay in the borehole for a long period before arriving at the surface, the PV and solids content of the drilling fluid increases. This makes it appear that the shale shaker is not performing adequately, when actually the solids are disintegrating into those that cannot be removed by the shale shaker.


(1)The Bingham Plastic rheological model may be represented by the equation
shear stress = (PV)shear rate + YP:   By definition, viscosity is the ratio of shear stress to shear rate. Using the Bingham
Plastic expression for shear stress,
viscosity = [(PV)shear rate + YP]=shear rate:
Performing the division indicated, the term for viscosity becomes
(PV) + [YP/shear rate]:
As shear rate approaches infinity, viscosity becomes PV.